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I. INTRODUCTION

Stress waves in composite materials are of interest to the engineer
both for their constructive- application and for the potential damage that
can occur when short duration stress pulses propagate in a structure.
Stress waves have a constructive use as a diagnostic tool to measure
elastic properties, search for flows and transmit information. Such appli-
cation usually involves waves in the form of pulses or ultrasonic sinu-
soidal pulses. Seismologists have long been interested in this application
of stress waves, particularly the study of waves in layered media (see e.g.
Ewing et al., 1957; Brekhovskikh, 1960). Early studies of laminated media
were aimed in fact at geophysical applications (e.g. Anderson, 1961).

Structural engineers however usually rely on composite materials to
sustain forces or loads. When these forces are a result of shock or impact
on the structure, the forces will be transmitted through the structure in
the form of stress waves. While the prediction of stress distribution for
static or quasi-static loads (vibrations) can usually be predicted by
structural engineers, routine methods for predicting the path

of stress pulses through a complicated structure are not readily
available ,even for homogeneous materials. The anisotropy and inherent
inhomogeneity in composite materials further complicates this problem.

The importance of impact stresses in composite structural design can
best be illustrated by the application of these materials to jet engine
fan blades (see Goatham, 1970). 1In addition to the load requirements imposed
by centrifugal and vibratory forces, these blades must be designed to

withstand the stresses due to impact with foreign objects such as birds,



hailstones, stones, and nuts and bolts. The relative velocity of the
impacting body to the blade can be in the order of 450 meters per second
(1500 ft/sec). The high speed impact of small objects results in very
small impact times (< 50 u sec) and the initial transmission of the total
energy into a local region of the blade. The impact not only induces local
cratering or splitting but long range damage away from the impact area can
result from the reflection of stress waves (spalling) from boundaries and
focusing effects due to changes in blade geometry. Solutions of the
problem of foreign object impact involve considerable ingenuity,such as
embedded high strength meshes and leading edge impact protection.

Impact loads involve two factors which are not considered in static
stress analysis. One is the speed of propagation of the stress pulse in
the material. In static problems the deformation energy can be
distributed throughout the structure, but in impact loading the volume of
energy storage is limited by the speed of propagation of the waves in
the material. For short time impact loads, a small amount of energy in
a small volume can result in stresses which can fracture or otherwise
damage the material.

The speeds of propagation of stress waves for a number of composites
are shown in Table I with comparable data for conventional structural
materials. These speeds depend on the direction in which the
wave propagates ,and when the elastic limit is exceeded,depend also on the
stress level. These wave speeds are motions averaged over a local region
of the composite involving many layers, fibers or particles whichever is
the case. Within each constituent, of course, the stresses propagate as

in the respective homogeneous materials.



The second difference between impact loading and static loads in

design is the rate of change of strain. Composites under high rates

of strain have been shown to exhibit different strength properties
(Sierakowski et al., 1970).' Often this results in higher ultimate
strength with increasing strain rate.

While the factors of finite wave time and rate dependent properties
are common to impact problems in all structural materials, the anisotropy

and inhomogeneity inherent in composites requires special attention in the

design of an impact resistant composite structure.

Anisotropic waves in solids are familiar to those in crystal physics
and seismology, however, these effects are not well known in structural
design where conventional isotropic materials such as aluminum and steel
are often used. Composite materials have the unique feature that the degree
of anisotropy can be varied in the material and hence the analyst can
change the directional distribution of stress waves in an impact zone and
perhaps avoid serious failure or fracture (perhaps by a judicious choice
of ply lay-up angles).

The effects of boundaries or discontinuities in material properties
on stress waves are well known (see Ewing et al., 1957). When a stress
wave encounters a boundary,normal to the wave front, separating materials
of different densities and wave speeds, p , v , the stress at the surface
is changed to

G =000 v/(e v +p v) (1)
2 271 1 2 2
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where % would be the stress in material "1'" if the boundary were

not present. The product pv 1is called the acoustic impedence and

depends on the type of wave (e.g. shear or dilatational in isotropic
solids).

Thus a wave originating in a "softer" material i.e. p v1 < p2V2
always suffers a stress increase at a boundary. This is indeed the case
for many composites especially those involving a compliant matrix, such
as epoxy, and a stiff fiber such as graphite, glass or boron.

Another effect of inhomogeneity is dispersion. Dispersion of the
average composite motion results in a distortion of the stress pulse
as it propagates. The effects Qf dispersion increése as the duration,
rise time, or period of the stress pulse decrease. Thus a pulse initially
containing compressional stresses can develop tensile stresses
as the wave propagates and perhaps induce micro-cracking in the composite.

The literature on the subject of waves in composites has expanded
enormously in the past few years and new theoretical and ekperimental
results are still being reported. This review then can only summarize
the work to the date of this writing. Also several good reviews have
appeared at this writing in which the various theoretical models for
wéves in composites have been discussed, (Peck, 1971, 1972, Achenbach,
1972).

This chapter will be somewhat tutorial in nature rather than a
critical review of the various theories to date. Instead I will try
to summarize the results to date which seem to be.accepted in the field

and which might be of use to the structural dynamics analyst.



In the following sections I will discuss
i} anisotropic waves in composite structures (without dispersion)
ii) dispersion effect on waves
iii) scattering and absorpfion of waves
iv) shock waves in composites
v) experimental results
vi) the effects of impact
For a review of stress waves in conventional structural material

see Miklowitz (1966).



I1. ANISOTROPIC WAVES IN COMPOSITES

In this section I will review those aspects of elastic wave pro-
pagation in anisotropic materials which are relevant to composites.
When the scale of the changes in stress level, (rise distance, wave-
length, etc.), is much larger than the siées of the constituents
of composites (fiber or particle diameter, fiber spacing, ply spacing,
etc.) the material may be treated as an equivalent homogeneous elastic
material as a first approximation.* In a homogeneous medium, the wave
speeds are related to the elastic constants and density by relations
of the type PvZ = C , where C 1is an elastic constant. This relation
has led to the use of wave theory to determine thé effective elastic
moduli of composite materials when the wavelength becomes larger than

the size of the scale of inhomogeneity. Thus the definition

Copp = 1imp cc V2 (1/a)

}\/a-—)oo

where A 1is the wavelength; '"a'" is a size associated with the composite
elements (e.g. fiber spacing ,and V(A/a) is the phase velocity for a
given harmonic wavelength. This method has been used by White and Angona
(1955) for a laminated medium and by Behrens (1967a) (1967b).

In the case of particulate composites or dispersion strengthened
composites the equivalent model may be considered as isotropic. But

for fiber composites, laminates, and unidirectional eutectoids, the

* “
The exception is the case of a composite plate with bending-extensional

coupling.



equivalent stress-strain relation will be anisotropic i.e.

t55 = Cijke ke (2)
where tij is the stress tensor and €1y the strain tensor.
A. Wave Speeds
The simplest wave to consider is a plane wave with no external

boundaries present. For such a wave the displacement has the form

R=AflR -z -vt) (3)

The vector pn defines & plane relative to the material axes and
v 1is the speed of the wave. When Eqs. (2), (3) are put into the
equations of motion for the material, the following eigenvalue problem

results

- 2 -
(Cijkﬁ n, nj pv Gij)Ak 0 4)
where p 1is the equivalent density and Gij the Kronecker delta. (See, e.g.

Musgrave (1954, 1970) ,and Kraut (1963)). In summary, for each wave

direction there are three different waves

WAy e, 2,08

When the v(l) are distinct, the three polarization vectors Q(l)
are orthogonal. For isotropic materials it is well known that only

two speeds are distinct



L [Lg_z_u_ N G
i (5)
L, 3 _2_}1/2 Cu - A® o

These are respectively the longitudinal and transverse (shear) waves.
For anisotropic waves however such characterization is not possible
except along symmetry directions.
For many composites, orthotropic symmetry suffices to describe
the material and nine elastic constants are required. The stress-strain

relation for this case is given by

K c c ¢ o o o [ e
11 11 12 13 11
t C C 0o 0 0 e
22 22 23 22
t C 60 0o O e
33 33 33
= (6)
t c 0 0 2e
23 Ly 23
t c 0O 2e
13 55 13
t C 2e
12 66 12
For structural applications composites are usually used in the
form of rods or plates. Consider, for example, the in-plane motion
of a plate with the x2 axis normal to the midsurface, i.e. u =20
2

For wavelengths much larger than the plate thickness we neglect the



effects of dispersion. For this case the equations of
motion for the in-plane motion in the lowest approximation became

(see Figure 1)

2 2 2 . 2
au, A 3 u, 3 u, R 52u,
= ¢ re ol ) ok
3t2 11 542 55 g§x2 55 13 1753
1 3
(7)
n2 2 2 2
9 U, N 9 u, 9 u, N ) u
o = C + C 0D e
3¢2 33 g5x2 55 axi 55 13 %%
where
C = C =-cC%/C
11 11 12 22
= - C% /¢
33 33 23 22
Cc = C .-C C /C
13 13 12 23 22

The constants Cij can be determined from the properties and geometric
arrangemént of the composite constituents.

For plane waves in the plate, two wave speeds exist for each direction
n= (cos &, sin ¢) (see Figure 1) and are determined by

(A -pv?) (A -~pv?) - A% =0 (8)
11 22 12

where ~
A C cos2¢ + C sin24
11 11 55

A C sin2¢ + C cos?y
22 33 55

A = A = (C +C ) sing cosé
12 21 55 13
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The ratio AI/A3 is determined by substituting each root v2 into
Eq. (4), (k =1, 3).

These values have been calculated for a number of composites (see
Moon, 1972a) and are shown in Figure 2 for 55% graphite fiber/epoxy
matrix composite. As the fiber lay-up angle is changed for the same
composite, the properties of the waves are seen to change dramatically.

The direction of particle motion relative to the wave normal is
shown in Figure 3 for 55% graphite fiber/epoxy matrix four ply lay-up
angles. For the Oo, i45013y-up angle cases, the direction of particle
motion tends to lie close to the fiber directions for most wave normals,

The *+15° and i30°1ay—up angle cases present énother departure from

A

the isotropic case. In both cases C > C . This means that for
55 33
waves traveling in the x3 direction the faster wave becomes transverse

and the slower longitudinal. This behavior is also found in pine wood.

B. Wave Surfaces

The relation v(¢), in Figure 3, is called the velocity surface.

However if the waves originated from some point in the plate, to an
observer at position (ro,@o), the first signal to arrive may not be

that corresponding to the wave normal ¢ = OO . If the arrival. time

is t =1, the first plane wave, R , to arrive at the point r must

satisfy

r o on@) = v(g) 9)

or r-s=1 where § = Q/v 3
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5§ 1s called the slowness vector and 1/v(¢) the slowness surface (see

e.g. Kraut, 1963). The equation r-s-= 1, then represents a line in

the slowness plane (sl, s )} and r is normal to that line. In addition
2

5 + r =1 must be tangent to the locus of values 1/v(¢) given by

g(s) =0
Thus

£ = avg
where o 1is a constant.
This coupled with Eq. (9) gives the position, r ,to the first arrival

of a plane of normal n(¢) generated at the origin,

vV og(s)
r= —— (10)

B TE

This locus r($) is called the wave surface and for in-plane plate
motion, there exists two such surfaces. These are shown in Figure 4,5
for the system 55% graphite fiber/epoxy matrix (Moon, 1972a).

The equivalent elastic constants for fiber-matrix systems at various
lay-up angles were obtained by Chamis (1971). These constants, which are
listed in Table II,are based on a static analysis of an eight-ply plate
using the known properties of each fiber-matrix ply.

The graphite-epoxy systems contrasts with other composite svstems

because of its high stiffness ratio; C /C = 24 (zero lay-up angle).
11 33

(o)

The velocity surfaces for lay-up angles of 0%, +15°

, i300, and +45° are
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shown in Figure 2.

Examining the wave surfaces for graphite-epoxy, as shown in Figures
4, 5, one sees that the inner surfaces Show peculiar cusps and noncon-
vexity. This behavior is also characteristic of crystal systems such
as zinc. Unlike the natural crystals, we can change the wave properties,
without changing the material constituents, by varying the fiber lay-up
angle. It becomes clear that, as the anisotropy in the outer
wa&e is reduced s the cusped behavior of the inner waves increases.
This is due to the increase in shear wave anisotropy (Figure 2).

Another peculiar property of wave propagation-in this composite
system can be noted by examination of the +45°  fiber lay-up case (Figure
5). On the outer wave surface, the angle of the wave normal of the first
arrival plane wave is listed. One can see that the distribution of
plane wave normals is heavily concentrated at positions on the wave
surface close to the fiber directions. This might imply a focusing of
waves along the fiber directions. For the other fiber orientations,
the distribution of wave normals is also concentrated at those points
on the wave surface close to the fiber directions but not as densely
as in the #45° lay-up case.

Similar results for the glass fiber-epoxy composite system have
been calculated (Moon, 1971). The ratio of stiffnesses for this case

/C = 3.1 (zerolay-up angle). The wave surfaces for this system

C
11 33 )
show features similar to the graphite-epoxy case.
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The velocity and wave surfaces for a boron fiber/aluminum composite
were also calculated (Moon, 1971). However, the shear velocity is almost
isotropic and no cusps appear on the wave surface.

Weitsman (1972) and (1973) has recently studied waves in a transversely

isotropic composite with a rigid fiber constraint.

C. Flexural Waves in Orthotropic Plates

For the case when the motion includes displacements out of the plane
of the plate, Mindlin (1961) and co-workers have formulated an approximate
theory to describe flexural waves in anisotropic plates. In that theory

the plate motion is expressed in a series in the thickness parameter i.e.

X
u =ud (x ,x ,t) + EE' ul (x ,x ,t) +

1 1 1 3 11 3
u =ud (x ,x ,t) + ... (1D

2 2 1 3

0 2
- 1

u =u’ (x ,x ,t) + +— u'(x ,x ,t) + .

3 3 1’ 3) ) b 3( 1, 3’ )

The average in-plane motion is governed by Egs. (7) while the functions.

u?, ul, ul are coupled together in the equations;
1

2

2.0 24,0 2140 1 1
) u2 3 u2 P u2 1 Uy 1 8113
o} = C + C + C 5 ax + C b ax
at2  665x2 N 66 ox, iy 5
1 3
p2ul , 3%ul p2ul . Py
o = + C ' * (G5 + Ci3) 333%
9t2 1lax% 55 533 3
0 1
du, u;




32ul 32ul 32ul 32u!l
3 ~ 3 3 ~ i
[o] = C + + (C + C ) m—'—'
31‘.2 33 axi 55 SX% 55 13 1 3
(12)
0 1
- §_ C _a_u_z + E?_
b L4 X3 b

It should be noted that in the procedure used by Mindlin the coef-
ficients € and C in Egs. (12) are replaced by, «x C and « C ,
Ll 66 3 L 1 44
respectively. The correction constants Kl and ¥ were adjusted in
3
order to match the thickness shear vibration mode.
Consider the flexural plane waves. One can show that the only plane

wave solutions of the form that satisfy Egqs. (12) are harmonic functions,

that is,

ul -by
3
1 ik - 1 -
u3 - bwl elk(g r - vt)
u? U
2 2

For bending mption, the phase velocity v depends on the frequency,
w = kv, as well as the wave normal p. Mindlin (1961) has examined
the dependence of v on w for various material anisotropies.

Thus the behavior of the bending motion at the wave fronts cannot
be determined in the same manner as was the extensional motion.
Consider the motion at the wave front only. Across this front, one

imagines that certain quantities have discontinuities. The displacement
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and the stress are assumed to be continuous across the wave front but
discontinuities in the second derivatives of U are assumed. Such
waves are called acceleration waves.
It can be shown (Moon, 1972) that the wave fronts associated with

a jump in the bending accelerations 'Bzui/atz and BZu;/Bt2 travel
at the same speeds as the wave front associated with the extensional
motion. There is another wave front corresponding to a jump in the
quantitity Bzug/atz . The speed for this wave is governed by the

equation

pv2 = C cos?¢p + C sin?$ (13)
66 A

For the case of a composite with symmetric ply orientation about the

midplane,

c =2¢C
66 Ly

The bending wave front associated with the jump {aZug/atz] is direction-
ally isotropic.

If both extensional’and bending motions are generated simultaneously
by impact, the two extensional and two bending wave fronts will travel

with the same wave speeds.

This conclusion does not hold if the laminate plate has only
a few plys. For example, Sun (1972b) has shown that the bending
and extensional wave fronts are different for a three-layered nlate
0°, 90°, 0° fiber lay-up angle). Thus the use of the effective

modulus theory to predict the speeds of the wave fronts would appear

to be valid only when the number of plys is large (probably > 10 layers).
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The analysis presented here is not unique. The same results can be
obtained if one considers the equations of motion from the method of
characteristics.

For harmonic waves the relation between the frequency w and wave

number has three branches. For the lowest branch

)
w( (k) ~ k2 kb » 0

wl) (k) ~ k kb »

Thus for low frequencies the phase velocity v = w/k depends on the
wavelength as in isotropic plates. For shorter wavelengths or higher
frequencies, v - (Cw/c)l/2 which is the isotropic velocity of the
wave fronts as discussed above. For the other two branches, m(z)(k),
m(3)(k) the phase velocities at high frequencies are constant and
anisotropic and equal to the values calculated for in-plane plate
waves.

The distinguishing feature about such waves in composites is that
these dispersion relations depend on wave direction. In
Figure 6, dispersion curves for flexural waves are given for the wave
directions 0° s 90°  for +45° lay-up angle, for 55% graphite fiber/
epoxy matrix composite using the data in Table 2 .

It should be noted that these mathematical models are approximate
and will break down for those Fourier components of the wave with wave-
lengths of the order of the composite constituent dimensions. Such
considerations induce additional dispersion in additiop to that due to

the plate surfaces.

D. Surface Waves

In contrast to the bulk waves discussed above, surface waves are
motions with wave-like behavior along the surface or interface between

two different materials, and exponential decay with distance from the
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surface. Thus if x is normal to the surface, a surface wave has
3

the following form for harmonic waves

o~ e-Y(w)X3 eik(w)[x1 cosa + X_ sina - v(w)t]

These waves are known as Rayleigh* waves (see e.g. Ewing et al., 1957)
for a free surface and Stonely waves for an interface.

For an orthofropic material the velocity of such a wave traveling
in the x1 direction on the surface of a half space normal to X

3
(Figure 7) is given by the roots to the following equation.

CSS - pV2 ‘II/Z

c (¢ - VZ.J
33 55( 11 ° )

- pv9)1=0  (14)

[C 5 - C(C

13 1

Examination of this equation reveals that one real root lies in the

internal,

0 < pv? <C
55

Thus the Rayleigh wave speed in this direction is less than the shear

speed [Css/c]l/2 . The motion is planar, i.e. u = 0 , and can be

*
Another wave known as a Love wave exists for a surface with a layer of

different material.
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shown to be elliptical in a plane normal to the surface.

The Rayleigh wave speed, however, varies with direction in the
plane of the surface and has been shown by Musgrave (1954) to give
a wave surface with cusps for certain anisotropic materials similar
to bulk shear waves. Also, the existence.of such waves for all surfaces
in the material has been vigorously debated in the literature.
However, Lin and Farnell (1968) have found Rayleigh type solutions for
all surfaces, though for certain planes and directions the variation
of the motion from the surface combines exponential and harmonic
functions. While this work has been applied to crystals, the application

to composites should be obvious.

E. Edge Waves in Plates

Waves confined to the edges of plates should be important in the
edge impact of plate-like structures e.g. jet engine fan blades. When
the average plate motion lies in the plane of the plate, waves analogous
to Rayleigh waves exist for low frequencies. For motion out of the plane

of the plate, flexural edge waves may propagate but are dispersive even

at low frequencies.
1. Extensional Edge Waves

As in the case of bulk waves, we may look for plane stress Rayleigh

A A~

wave solutions in plates. By replacing C , C , C s by C s
11 33 13 11 33

C in Eq. (14) values may be obtained for extentional edge waves in
13

anisotropic plates.

The extension of Eq. 14 to plates must be made with caution since

the plane stress approximation breaks down at frequencies approachiné
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that of the first thickness shear modes for which the waves became
dispersive. McCoy and Mindlin (1962) have used a higher mode analysis
to examine such waves for isotropic plates but the extension to
anisotropic plates does not seem to have been made at this writing.
2. Flexural Edge Waves

Flexural edge waves for isotropic plates using Mindlins plate
theory has been studied by Kane (1954). No reference to the problem
for anisotropic plates has been found by the author. As a brief
sketch of the procedure, let us consider the low frequency classical

anisotropic plate equation for the transverse displacement u = uz(xl,xs,t)

3bu a%u 3*u 32u
c + 2(C +#20 ) ——— 4 C 46— =0 (15)
11 ax’-l- 13 55 axz 3X2 33ax'+ atz
1 1 3 3

where G = 12/h?2 , h is plate thickness. For an edge wave propagating

in the x direction we look for solutions of the form
1

u=A e—yx3 el(kxl—wt)

When the frequency is given, y and k are related by the equation

C
3

y* - 2(C +2C ) k2y2 + (C k* - pGw?2) =0 (16)
3 13 55 11

The appropriate boundary conditions require the moment on the edge to

be zero, i.e.

+ C — =20 (17
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and the resultant shear contributions from shear force and edge torque

gradient to vanish, i.e.

3 3%2u 92u 33u
= — + C ——| +4C —m =0 (18)
il 13 ax2 33 5x2 55 5x25x
1 3 1 3

Choosing two values of Yy with negative real part, and applying the
boundary conditions, we obtain an equation for the phase velocity of

these waves v = w/k

2 2,2 Cllkz 5| pGk2
2 4+ y2 =2(C + 2C )k%/C , = - v
" Yz ( 13 55) 33 Ylyz pG C33
Let (19)
C )
g2 = 1 Xi oGC
pG k2 33
Then B2 + 4C B - C2 = 0, (choose B > 0)
55 13

F. Waves in Coupled Composite Plates

Laminated plates made up of unidirectional plys can have coupling
between the extensional or inplane motion and the flexural or out of
plane displacements. Using an effective modulous theory the equations
of motion for one dimensional waves in the x direction, with u = 0,

1 3
assume the form (see Ashton, et al., 1969)

32u 53u 32u

A —2L1_ B 2 = oh !
11 axz 11 3X3 atz

1 1
., (20)

3 2

P u,; ] u, 9 u2

B - D ~—— = ph

Hoox? 11 5x! a2
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In this case there is no pure flexural or extensional wave. Instead

we have a coupled wave

with a dispersion relation

(phw? - A k2) (phw2 -D k2
11 11

For low frequencies, or when B 1/A?l« 1,
1

extensional motion has the phase velocity

Bll

AZ
11

V 1 -V [ ]

. 2
where v0 = All/ph

- B2 k2= 0 (21)

the wave with dominant

Similarly, for low frequencies (k - 0) or small B11 , the mode

with flexural motion dominant, has the phase velocity

- D B
v2 o g2 g o M k2)
2 e

ph 11 11

We might note here that the extensional shear wave in this direction

is uncoupled from the flexural motion. Since the extensional-flexural

coupling is unique to composites, it is suprising that such waves in lami-

nated structures have not received as much attention to date as other topics

in dynamics of composites. Sun (1972b) has studied the propagation of wave

fronts in laminated plates with bending-extensional coupling. He also observes

coupling of the inplane and flexural motions in the various waves.
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IIT. DISPERSION IN COMPOSITES

One definition of wave dispersion is the distortion of the pulse
shape as it propagates through the material. It is to be distinguished
from attenuation in which energy is scattered out of the waves or con-
verted to heat. A more precise definition of dispersion rests on the
assumption of a linear material and the theorem that any wave pulse in
the material can be expressed as a linear sum of harmonic waves, e.g.

for a one dimensional wave the displacement might have the form

DI =
=

r UGw) e 0 (EX/Vy, (22)
—co

For a non-dispersive material the phase velocity of all the harmonic
components are equal. Examples of wave dispersion are common in structural
dynamics of isotropic materials in the form of rods, plates and shells.
Although the bulk waves in elastic materials are non-dispersive, the
introduction of bounding surfaces, which define the structural element,
causes the reflection of these waves from thé surface to depend on

the wavelength (A = 2n/k = 27v/w) .. If "a" represents a length
parameter (thickness, diameter) then ka or wa/v become critical
parameters in the problem of wave dispersion.

It is only natural then to expect that inhomogeneities such as
fibers? laminates or particles in a material matrix will result in a
greater dispersion of waves as the wavelength approaches the size or
spacing of the composite constituents. It should be noted here that

when a composite is used as a structural element there will be two
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sources of dispersion; that associated with the lengths of material
elements, e.g. fiber diameter, or ply thickness, and that associated
with the structural dimensions. It should be expected that the latter
will become important for wavelengths much longer than those of the
order of the material elements.

There have been three general approaches to material dispersion
in composites:

i) exact solutions of elastodynamic equations

ii) approximate solutions of elastodynamic equations

iii)' micro continuum theories

Several reviews on waves in composites have appeared (Peck, 1971,
1972, Achenbach, 1972) in which the various models for wave dispersion
have been discussed. The reader is referred to these reviews for
detailed discussion of the various approaches. In this chapter I will
try to summarize the principle conclusions of the work on dispersion
published to date.
A. Pulse Propagation and Dispersion

While theoretical descriptions of dispersion often employ an
infinite train of harmonic waves, the engineer is more often interested
in the propagation of stress pulses in a medium. Conceptually, calcu-
lation of the effects of dispersion is straightforward. One decomposes
the stress pulse at a given time into a spectrum of harmonic waves
and uses the phase velocity to translate each component wave, reconstruc-
ting the pulse at a later time using Eq. (22). Two developments in the

last decade have made the execution of this procedure reasonably easy.
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One tool is the digital computer and the development of efficient Fourier
summing algorithms such as the '"fast Fourier transform'. The other is
the analytical foundation developed by Skalak (1957) and others

for using an approximate dispersion relation for the phase velocity

vy o (1 - ak?)

)
or (23)

vaev, (1 - Bw?)

for large times after impact or large distances from the wave source.
Peck (1971), Peck and Gurtman (1969) and others have explored in detail
the effects of dispersion in layered composites. They have demonstrated

that a wave with a stress discontinuity will be smoothed out, that stress

overshoot can occur, and that an initial compression pulse can develop

tensile stresses as the wave propagates. These effects can be heuristically

understood since the local inhomogeneities will reflect part of the
propagating stress discontinuity at each layer. Multiple reflections in

each layer will delay part of the pulse and effectively broaden the average
stress in the pulse. Further ,the local inhomogeneities can change the

sign of the reflected stress as well as raise the stress at a layer
interface. Examples of the effects of dispersion are shown in Figures 8, 9
where a fast Fourier computer routine was used. Case I (Fig. 8) involves the
example of decreasing phase velocity with frequency. It has been shown
(Peck, 1971) that when the input is a step in stress the response is

related to an integral of the Airy function
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Smoothing of the stress jump can be seen in Figure 8,as well as the
overshoot right after the arrival of the pulse. At the tail end, the
stress is seen to change sign. This dispersion is characteristic

of longitudinal waves propagating down the fibers or layers as well

as across the layers.

Case II involves increasing phase velocity with frequency or
wave number. This case is found for shear waves propagating down

the fibers or layers. In Figure 9, the response seems to mirror the

previous case, in that stress reversal obtains for early time.
B. Dispersion in Rods and Plates

Mechanicians have long been familiar with the effects of geometric
dispersion when classical materials take the form of rods and plates.
For isotropic cylindrical rods the long wavelength dispersion relation

was given by Chree (1890) and others

VooV [1 - %~v2 (ka)?] , ka << 1

where v 1is Poissons ratio, and a 1is the rod radius. For anisotropic
rods an equivalent dispersion relation for the phase velocity (neglecting

material dispersion) was worked out by Pottinger (1970)

v vV U.—Lvﬁﬁﬂz] , ka << 1
o 4
(24)
v! = _1._ [SZ + 82 4 _1_32 + S2 4+ g2 ]1/2
/7S 12 13 2 1w 15 16
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where v% = 1/Sllp , and Sij are the elastic compliances of the
composite. Pottinger points out that the accuracy of this approxi-
mation depends on the values of V' and a/)\. For 2% deviation from the exact
dispersion relation, 2a/\ < 0.6 for v' = 0.1, and 2a/x < 0.16 for v' = 0.4.
If the fiber direction of a unidirectionél composite is varied
relative to the rod axis,different dispersién relations are obtained
for each angle. An example is shown in Figure 10 for a Boron-Aluminum
composite.
For a longitudinal wave in a plate one can derive a similar dis-
persion relation for anisotropic plates incorporéting the transverse

inertia. For a wave propagating in the x1 direction, and x

normal to the plate, the phase velocity is given for long wavelengths

2
v | =2 |- A2 (kd) , kd << 1 (25)
- P C2 24
22

~

where C was defined in Eq. (7), and d is the plate thickness.
11
The Eqs. (24), (25) neglect the material dispersion due to the
inhomogeneous nature of the composite, which becomes increasingly

important as the wavelength approaches the scale of the size of the

constituents. Such effects are considered in the next section.
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C. Dispersion in a Layered Composite

We now examine the propagation of elastic waves in a solid made up
of alternating layers of different material stiffnesses and densities.
This model-has been used by many authors to examine the effects of
dispersion in composites (Peck and Guftman, 1969; Sun, Achenbach, Herrmann,
1968). It is also an important problem in seismology to which numerous
authors have given attention (Rytov, 1955). The wave concept for this
system is the same for connected discrete particle chains as described
by Brillouin (1963).

A cell is defined as two adjacent layers. A local cell coordinate
n  will be used to distinguish one cell particle from another. The
position to any particle in the composite is given by x = na + n where
a 1is the cell length, a=d + d2 . A displacement Wave in the direc-

1
tion normal to the layering has the form

u(x) = A(nyetna - ut)

We can consider either longitudinal waves for which u represents
a displacement normal to the layering or a transverse wave where u repre-
sents the displacement parallel to the layering. In the former case let
o  be the normal stress on any plane parallel to the layering and c
thg longitudinal speed of sound in the material. For the transverse case o©

will represent the shear stress and ¢ the speed of a shear wave in

the material. The balance of momentum is given by the following equation
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along with the stress-strain relation;

These equations must be satisfied in each of the two materials and

the solutions in each layer must satisfy boundary conditions of continuity

of stress vector and displacement. Solutions which satisfy the above

equations and the cell boundary conditions at pn = 0 are given by

u (m) = e1kna [A cos U1 + B sin 40
n c
1 1
. p. Co
u (n) = ikna [A cos wn + ! B sin &
n
2n p C c
2 2 2 2
iwt

(The factor e has been dropped for convenience). [The term pc 1is

called the acoustic impedence and is proportional to the ratip of stress/

velocity and is analogous to the same concept in electrical systemsf]

The boundary conditions at the nth cell - (n + l)th cell interface
yield two homogeneous algebraic equations for A, B  and also gives
the dispersion relation.

mdl Cwd wd Cwd

cos ka = cos —= cos —2 - P 12 (26)
c1 c2 2p c1 02

where p= p ¢ /p ¢
2 1 1
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This relation is periodic in k and symmetric about the k =0
axis. For each k in the Brillouin zone, -m <k a <w , there
are an infinite number of values for « and hence an infinite

number of branches. There is one acoustic branch for either transverse

or longitudinal waves and may be obtained for long wave lengths by

expanding Eq. (26) about k = 0, w =10 ;

w = Vv k
0
where
2
1 . 4 . % (1+p2) dd,
v ac 2
0 ac]_ 9 p a2 Clcz

When the acoustic impedances are equal

which is just the sum of the times for a wave to traverse each of

the layers in the cell.
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For this case the waves are non-dispersive. This is true because there

are no reflections at an interface of two materials when the acoustic

impedances are matched.

If the successive branches are translated to successive zones,
the dispersion relation takes the character of a continuous homogeneous
medium, as shown in Figure 11. However there are stop bands pro-
portional to the mismatch of impedance. This behavior is also char-
acteristic of quantum electron waves in a periodic potential of a
conducting solid.

For long wavelengths the dispersion relation Eq. (26) can be
expanded about ¢ = 0, k = 0, to obtain an approximate dispersion

relation for the lowest or "acoustic'" wave mode.

v v (- a(kd)?) (27)
where
st s4 68262 §2  82) 8.8
a:% {1—V"*-1—+—2+ 12+2(1+p2) —1-+-£ 12}
0 fct ct c2¢? p c2 c?] cec
1 2 1 2 1 2 11
and

§ =d/a,§ =4d /a.
1 1 2 2

Note that when p =1, a =0
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The long wavelength phase velocity can be shown to be related to the
equivalent static homogeneous elastic constant for the material, i.e.

for longitudinal waves

vZ = C /p
11
p = pV + p ¥V
11 2 2
and
Vv Vv
1 2
Cc = L i
11 U1 O +2n) T O+ ]
1 1 2 2
where V =d/(d+d) , V =d /(d +d4d )
1 1 1 2 2 2 1 2

In the terminology of Herrmann and Achenbach (1968) v, is related
to the effective modulus, C11 whereas v is related to an effective
stiffness which is frequency or wavelength dependent.

More generally consider a composite made up of three dimensional
repeating cells, such that L= l@l + m%Z + nés (2, m, n, integers)
is a lattice vector between corresponding points in any two cells. The
vectors are called a basis set for the material. One can think of the
material properties 0, Cij as periodic functions i.e. p({) = p({ + k).
It is well known that wave-like solutions exist for such a medium of

the form
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s i(k<L-wt

B+ R = UyGpe’ BTEeY)

Thus the motion varies by a constant phase factor from cell to cell
and the problem is reduced to finding the motion in a single cell

i.e. H (5) defined by k = 0, Further if one writes

o)

U@ = e®Ey

The function H(E) must be periodic,

WG+ L) =W ()

For fiber composites in two dimensional periodic arrays one would
have only two basis vectors in the plane normal to the fiber directions
but similar properties on Q would obtain.

Other work on the laminated composite includes that of Sve (1971a,‘1971b) who
examined thermoelastic effects and waves oblique to the layering.

In addition to the layered or laminated composite, dispersion in
fiber or rod reinforced composites has been studied. Approximate
solutions for this problem were given by Puppo et al. (1968), Haener
and Puppo (1969), Jones (1970) and Ben-Amoz (1971). Jones shows the
phase velocity for longitudinal waves traveling down the fibers,
mode dispersed down for the lowest mode, as is indicated by experiments.

(Asay et al. (1968), Tauchert and Guzelsu (1972)). He also calculates
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the cutoff frequency of the second mode for longitudinal waves,in
terms of the matrix and fiber properties.
D. Combined Material and Structural Dispersion

As mentioned above, dispersion due to structural geometry (e.g.
in rods or plates) and dispersion due to material microgeometry (e.g.
fiber size and spacing) have been studied separately but in actual
structures both are present. A class of problems in which both of
these effects are examined simultaneously is the theory of laminated
plates and shells. Multilayer plates have been studied by Jones (1964),
Sun and Whitney (1972), Biot (1972), Dong and Nelson (1972}, Scott
(1972), and Sun (1972a). The study of waves in circularly laminated
rods or shells of two materials has recéived attention from Lai (1968),
McNiven et al. (1963), Armenakas (1965), (1967), Whittier and Jones
(1967) and Chou and Achenbach (1970).

One can perhaps hazard a guess as to the comparison of the two
effects on pulse propagation by an appeal to the head of the pulse
approximation discussed above. For longitudinal waves in a rod or
plate the dispersive relation for a non-dispersive material has the

form, for long wavelengths,
voev [1-a2(a/2)2]
-1

where a is a structural thickness or diameter variable. The constant

v is related to the square root of an elastic modulus. If the
1

material is itself dispersive, as occurs in a laminate or fiber composite ,
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the constant v is related to the square root of an elastic stiff-
1

ness which itself depends on the wavelength
- Rp2 2
v1 g_vo[l B4(b/A)4]

where b is a fiber diameter or lamination thickness. The combined

effects of both structural and material dispersion thus have the form

Vo

2
JI- 2 v 82 2y am2]
2

a

In most composites, b/a << 1 , so that it would appear that the effect
of material dispersion, where the structural geometrigs guide the waves,
can only become important when g8 >> a.

The corresponding problem for a composite beam has been examined
in detail by Sun (1972) in which he examines waves in a laminated beam
using an effective stiffness continuum theory assuming that each
layer obeys the Timoshenko beam assumptions. Sun compared his theory
for a ten layered plate with both an exact analysis and an effective
modulus Timoshenko beam theory. For alternating layers, of shear
moduli in the ratio of 100, he found that the effective modulus
model, based on Voight averaging of the constants, agreed with the
exact analysis for 2mh/A>1 where h is the total beam thickness.
For waves of shorter wave length the effective modulus model deviated
substantially from the microstructure and exact models.

E. Continuum Theories for Composites

When the dimensions of the constituents of a mixture (e.g. fiber
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diameter, ply thickness) are much smaller than the structural dimen-
sions, the engineer is often satisfied with averages of the motions
of the constituents. In such cases a continuum model may suffice
to describe the motion in which the inhomogeneities are '"smoothed
out'", Examples of such are found in the use of classical elasticity
to describe conventional structural materials which have a hetero-
geneous grain structure. A similar model for laminated composites,
using an effective modulus theory has already been discussed above
which does not include material dispersion of waves (Chamis, 1971).
Attempts to construct continuum descriptions of dispersion in
comﬁosites have been varied, but there are,in general,two basic
approaches. The axiomatic  method, is charaeterized by
the assumption of a stored energy function with certain functional
dependence on the deformation descriptors. The kinematic
variables include descriptors for the motion of the microconstituents,
e.g. fibers or particles, in addition to the average motion
at a point. Examples of this method are given by Mindlin
(1964), theory of '"microstructure in elasticity', Eringen (1966, 1968)
Eringen and Suhubi (1964), theory of micropolar elasticity and micro-
morphic continua respectively, and also a mixture theory approach
by Green and Naghdi (1965). These theories attempt to characterize a
broad class of materials and in the linearized version of these theories,
contain a great number of material constants which must be determined
by experiment. Ozgur (1971) for example has used Eringen's micropolar

theory in an attempt to describe orthotropic fiber composites. His model
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uses 30 material constants as compared to 9 constants for classical
orthotropic elasticity. This theory results in the correct shear
dispersion phenomena but does not predict dispersion for longitudinal
waves.

In contrast to the first method the second approach starts
from an assumption of a knowledge of the properties of each constituent,
and by averaging, ''smoothing" and energy methods tries to arrive at
a continuum formulation in which the material constants are known in
terms of the properties of the constituents. An example of this method
has been given by Achenbachand Herrmann (1968a) (1968b) in which the
microelements are fibers embedded in an elastic matrix. The fibers
were assumed to behave as Timoshenko beams. Each point in the equivalent
continuum is assigned two kinematic variables, the average displacement
at a point u , and the fiber rotation vector which is independent
of the vector uo. The resulting theory thus has six differential
equations of motion to be satisfied at each point. These authors are
able to predict dispersion for shear waves. For a wave normal along
the fibers and motion transverse to the fibers the following dispersion

relation is obtained

nE
p* 02 v € K21 + g (kr)?)
by

where p* is the composite density, C an effective shear modulus,
Ly

n the volume fraction of fiber, and Ef , * , the fiber modulus and
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radius of gyration respectively. For a high modulus fiber in an organic-
polymer matrix the ratio Ef/C44 could be as high as 102. Thus the
dispersive effect of the reinforcement can become important even at
wavelengths much larger than the fiber diameter. This model however
does not predict dispersion for longitudinal waves. This problem
was solved quite successfully in a series of papers by Sun et al. (1968),
Achenbach et al. (1968) for the case of a laminated composite and by
Achenbach and Sun (1972) for a fiber reinforced composite. The resulting
dispersion relations predicted the correct phenomenon at low
frequencies, Figure 12. The exact harmonic wave solution for alternating
elastic isotropic layers was obtained by Sun et al. (1968) and compared
with the continuum theory dispersion relation. These results (Figure 12)
show good agreement at low frequencies and for materials whose moduli
do not differ very much.

A similar method has been employed for fiber composites by Wu (1971).
In these methods, one establishes a local cell at each point x in the
continuum containing a fiber and part of the matrix. Embedded in the
cell is a local coordinate system r - There is assuﬁed at each point
X , alocal or microdisplacement field. In the case of Wu this takes

the form

o, ) = pl o+ 9 - (28)

for all points in the cell including fiber and matrix. In the paper of
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Achenbach and Sun (1972) they assume different forms of displacement
fields for fiber and matrix material in each cell.

Thus for r < a , cl =T cos B, ¢z =1 sin ©
2

uf(é, %) ui(é) + T cosb ﬁgi(§) + T siné wgi(%)

and for r > a

um(§, é) = ui(§) + a cosH wgi(%) + a sihe ¢§1(53

+

{r-a) cos®6 wgi(%) + (r-a) sin® w?i

This procedure is repeated for neighboring cells and the average dis-
placements along the adjoining cell boundaries are matched. In the
model of Wu (1971) this resulted in constraint equations on the local

cell strains

U, T %ke (29)

Similar relations are obtained in the model of Achenbach and Sun. The
concept of a 1bca1 constraint was first introduced in these theories
in the earlier work of Sun, Achenbach and Herrmann (1968) for the laminated
continuum.

To obtain equations of motion in these methods the local displace-

ment Eq. (28) is put into constitutive equations for the fiber and
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matrix. The resulting strain energy density in each cell is integrated
over the cell coordinates(holding x fixed) and divided by the cell
volume to yield the strain energy density at the point X> V(g, %)

A similar procedure is carried out for the kinetic energy density at X s
TQ%, %).‘ Hamilton's principle is then‘used to find the differential

equations of motion and boundary conditions

t t

8 1J (T - V)dtdv + [ Y oswdt = 0 (30)
t, V t,

subject to the constraints between u, 9> (e.g. Eq. (29)) and where W

is the work done on the boundary.

Grot (1972) has recently completed similar work on the fiber composite
continuum and has obtained very good agreement with the experiments of
Tauchert and Guzelsu (1971), Achenbach (1972) in another review in this
series discusses the continuum models of composites.

Other work of a similar nature includes Ben-Amoz (1968), Barker (1970),
Bartholomew (1971), Bolotin (1965), Gurtman et él. (1971), Hegemier (1972),
and Koh (1970). Several mixture theories have been developed in which the
strain energy contains terms proprotional to the difference Qg(l)- 3(2)),
between the average displacements of each constituent (e.g. fiber and
matrix). Examples of this are the works of Bedford and Stern (1971),

and Martin, Bedford and Stern (1971). In the latter work,applied to

a fiber composite, estimates of the constitutive constants are given in
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terms of the fiber and matrix properties and geometry. Other mixture
models have been given by Lempriere (1969) and Moon and Mow (1970) for
spherical particles in a matrix.

Two comments regarding continuum theories of composites are in
order before finishing this section. First, when the mathematical
structure of these ad hoc continuum models are examined, one notes a
éimularity with the axiomatic theories discussed earlier. Thus the model
of Sun et al. compares with Mindlins (1964) microelasticity theory and
Wu's model compares with Eringen's micromerphic thoery. Herrmann and
Achenbach (1968) have discussed the application of Cosserat theory of
continua to composite materials. While specialized, these ad hoc
theories however have the advantage of predicting the effective
material constants for the composite in terms of the material constants
of the constituents. This approach enables the analyst to quickly
check his predicted dispersion results,
while in the more general theories such confirmation is not built into
the theory.

The second remark concerns the usefulness of continuum theories.
While it is remarkable that the laminate continuum theory of Sun et al.
(1968) checked so very well with exact theory, what is more remarkable
is that insofar as wave propagation is concerned the digital computer
was sufficient to provide the exact dispersion relation. The efficacy
of analytic methods not withstanding ,continuum models of composites will
certainly find strong competition from computer oriented methods (such

as the finite element method) in the future,
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F. Variational Methods for Periodic Composites

When the constituents of a composite are arranged in a periodic
array ,such as a laminated medium or a fiber composite with uniform
spacing, the displacements and stresses under harmonic waves can

be represented by periodic functions. This problem is called

"Floquet theory" in the subject of differential equations. Thus
the problem is reduced to finding a solution in one cell. Such
problems have analogues in solid state theory of electron waves
in periodic potentials. The solution of the Schroedinger equation for these
problems by variational methods has been outlined by Kohn (1952).
The extenstion of these methods to periodic¢ composites has been made
by Kohn et al. (1972), who applied the theory to a laminated composite.
Wu (1971) has applied the variational method of the above authors to
a wave propagation normal to a periodic fiber composite material.
Wheeler and Mura (1972) and Tobén (1971), have looked at similar
problems.

According to the Floquet theory, wave like solutions to the
equations of motion in a periodic medium are themselves represented

in terms of periodic functions

. H(%)e;iwt _ Uo(%)ei(k-x—mt)

B0 = § GR)
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where 5 is a lattice vector. If one writes the stresses in the

form

the equations of motion become

+p w?U =0

oke,2 k

A statement of a variational theorem is as follows; (Kohn et al.,

The problem of finding solutions to the equations of motion in
terms of the functions UO(%) which are periodic in the lattice vectors,
and satisfy the displacement and stress vector continuity conditions across
the cell and cell constituent boundaries,is tantamount to finding the

stationary value of the functional

IfY] = { (- % Sk t pwzg-U*} dv
cell

with respect to a complete set of functions {EO} which are perioifin the
lattice vectors, continuous and’Pave continuous first derivatives in the cell
(ekz is the strain tensor anéfgndicates complex conjugatg).

This theorem allows one to choose a linear combination of functions
from {UO} to approximate the wave in the cell. The amplitudes of
each of the functions are chosen so as to extremize the functional

I[U] . This procedure leads to a homogeneous set of algebraic equations

from which one obtains the dispersion relation between w and k .
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There will be as many branches to the relation w(%) as there are
approximating functions.

While the method can produce a reasonable approximation to the
dispersion relation, the stresses in the cell may not be as accurate
and lead to discontinuous stress vectors at the constituent boundaries,
(Kohn et al., 1972) Bevilacqua, Lee (1971). However more general
variational schemes can achieve better stress determination as well as
obtaining the dispersion relation. (See e.g. Nemat-Nasser (1972)).

Lee (1972) has recently reviewed such methods for periodic composites
Krumhansl (1970) has applied Floquet theory to the propagation of transient
stress pulses in a layered medium and similar work has appeared by

Krumhansl and Lee (1971).
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IV. ATTENUATION AND SCATTERING

Attenuation of a propagating wave represents loss of energy, in
contrast to dispersion in which the wave energy is conserved but
redistributed in a deformed stress pulse. Loss of energy during
dynamic motion in composites can be attributed to at least four
phenomena; i) viscoelastic or anelastic effects of the constituents,
ii) wave scattering, iii) microfracture, iv) friction between poorly
bonded constituents. One important use of viscoelastic damping has
been the concept of constrained layer damping of beams and plates (see
e.g. Kerwin (1959), Yan (1972). In this application a three layer
laminate has a highly viscoelastic layer constrained by two stiffer
elastic layers. A continuum theory for a viscoelastic laminated
composite has been given by Grot and Achenbach (1970), Biot (1972), as
well as Bedford and Stern (1971) using a continuum mixture theory. The
former work does not treat waves, whereas Bedford and Stern calculate
the attenuation coefficient in terms of the viscoelastic properties for
a wave traveling along the layers.

As in acoustics, the effect of inhomogeneities in a solid is to
scatter energy out of an incident wave. If there is some order to the
inhomogeneities e.g. a periodic array of fibers or particles, this
scattered eneréy can be rescattered back into the wave (i.e. dispersion)
or reflected back to the wave source. To the extent that the inhomo-
geneity is random, elastic energy will be scattered out of the incident
wave thus attenuating the pulse. Thus a mixture of elastic solids can

appear in its averaged properties to be inelastic. Krumhansl (1972} has
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some general remarks on this problem in comparing composites with the
theory of crystal lattices. Knopoff and Hudson (1967) studied a
randomly heterogeneous elastic medium with a plane harmonic wave
incident on it. At low frequencies the scattered energy shows the
familiar Rayleigh dependence on frequeﬁcy i.e. vw?2 . Mok (1969) has
constructed a model for the scattering of waves propagating normal

to the fibers, when both fiber and matrix are elastic, and indicates

the possible existence of dissipation in the composite under dynamic

loadings. Recently Christensen (1972) and McCoy (1972) have examined

attenuation due to scattering and disorder in composites.

Chow and Hermans (1971) have examined the intensity of scattered
waves in a composite by considering the density and elastic constants
to be random variables independent of an axial coordinate., The authors
calcuate the scattering cross section (which is a measure of the energy
of the scattered field)and find the cross-section proportional to w?
(two dimensional Rayleigh scattering ). Theoretical data on the cross-
section for longitudinal and shear waves propagating in a glass fiber-
epoxy matrix composite are presented.

Moon and Mow (1970) presented a theoreticai model for attenuation
in dilute particulate composites using the dynamics of a single particle
in an elastic medium. When the inhomogeneities are dilute (volume
fraction, Vf < .10) and random, a first approximation to the calcu-
lation of scattered energy can often be obtained from the mechanics
of a single scatterer, (The diffraction of elastic waves by single

scatterers has been reviewed by Mow and Pao (1971)). When the density

of a rigid inclusion p , embedded in an elastic matrix; is greater
2 s
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than that of the matrix, i.e. P P the equation of trans-
2 1

lational motion of the sphere U can be found to be

901

It It (U-u) = 0 (31)

o, U 1 (*+ 1) fdU_ du)
2 g¢2 o (2«3 + 1)2

T (2% + 1)
0

where wu, 1is the average motion of the matrix without the inclusion

k, 1s the ratio of dilatational to shear speed in the

martix, CL/CS
TO = a/CL
a, radius of the sphere
The form of this equation suggests a mixture theory in which the

elastic energy depends on (U-u)?, and a dissipation function pro-
portional to (ﬁ—&)z . The dependence on the velocity ﬁ accounts
for the radiation of elastic energy when the particle vibrates in the
matrix. The dependence on the matrix velocity U accounts for
scattered waves if the particle were motionless. The resulting
equations for the particulate composite, of volume fraction Vf,

were found to be

2 2 2
o (1 -V fu g du pzvf 97U
1 at? 322 at2
(32)
2
U, 2C [%%- - g%ﬂ +Q (U=u) =0
atZ 0



- 47 -

where

If the damping were neglected the medium would exhibit a natural

frequency of QO (e.g. p/p =10, k=2, a=10""m, C, = 4 103m/sec.,
2 1

L
Q /2m ~ 2 108 HZ). For N particles per unit volume, a sine wave
0 .
pulse (wavelength X >> a, and initial intensity IO, at Z =0,

proportional to (du/9z)2), will decay as

where

Py 2 I
Y = {——%] —g—;— (2«3 + 1) aG[‘é—L] , (02 >> pl) (33)

The scattering cross-section vy follows the well known Rayleigh
behavior at low frequencies.

While this model is clearly limited in application by the
assumptions made, it serves to make a simple connection between

attenuation in a composite mixture of elastic solids and the mechanics



- 48 -

of the individual constituents. Further work on attenuation in
composites is needed. The extension of the model of Moon and

Mow to dilute fiber composites could be made using the work of Mow
and Pao (1971) on the dynamics of a cylindrical inclusion in an
elastic matrix. For volume fractions above 10%,mu1tip1e scattering
should be taken into account as was done by Mok, and Chow and

Hermans. In a recent paper Sve (1973) constructs an equivalent

viscoelastic model from the scattering of waves by cavities in a

porous laminated composite.

The above model for scattering of waves is based on the
interaction of harmonic waves of wavelengths long compared with
the size of the scatterer. The analyses of problems of this
type have been summarized by Mow and Pao (1971). When the scatterer
encounters a stress wave with a very short rise distance, a wave
front analysis based on ray theory may be more efficient. This
method has been employed by Achenbach et al. (1968), (1970) and
by Ting and Lee (1969). One should keep in mind that the time for
the stress to rise from zero to a given value, in the distance of
a fiber diameter (< .005 inch or .1 mm) is of the order 1077 - 1078 sec.
Such waves only occur in shock waves or in ultrasonic pulses of

frequency greater than 10 HZ.
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V. SHOCK WAVES

The previous discussion has assumed that the deformation in
the propagating waves was small and that the material behaved in
a linear elastic manner. Nonlinear elastic wave analyses in com-
posites are few, as e.g. that of Ben-Amoz (1971) who studied finite
amplitude waves in a fiber composite for waves along the fibers.
Nor has much work been published to date on plastic waves in composites.
Wlodarczyk (1971) has examined shock waves in plastic layered media

with linear unloading behavior. Calculation of plane waves in anisotropic

elastic-plastic solid® has been discussed by Johnson (1972) but was

not applied to composites.

Shock waves in composites, however, have received a great
deal of attention. 1In this class of wave phenomena, the pressures
in the solid are assumed to be s$O high,that the material can be
treated as a hydrodynamic fluid. This means that the shear or
deviatoric stresses are assumed to be small compared with the mean
stress or pressure. This occurs for pressures much greater than the
yield or elastic limit stress.

A plane shock wave is defined as a thin planar region pro-
pagating relative to the material, across which the velocity has a
discontinuity. When the medium is homogeneous, continuity and
momentum conditions across.the shock surface yield the following
relations between the density p, normal particle velocity v , shock

speed U, and pressure P ,

Ip(v-U)I =0

I pv(v-U)I = - TIPI
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When the conditions ahead of the wave are such that P 0, v =0,

the conditions behind the shock require that
o

U (1 - E—J
1

<
]

Py
U2 =P /p (1--)
1 0 01

In addition one must prescribe a constitutive relation for the
pressure and satisfy an energy balance across the shock.

Munson and Schuler (1970, 1971) have extended this analysis to
laminated composites and mechanical mixtures. In their model they
neglect the thermodynamics and assume constitutive relations for all
n constituents in the composite, P _ = Pn(pn), and require the pressures

n

in all the constituents to be equal at any position x, i.e.

P (x) =P (x) for all n
n 1

Applying this theory to laminates for waves travelling both along
and normal to the layers, Munson and Schuler (1970) conclude that the
shock speed is independent of the direction , under certain assumptions
on the strain in each constituent. The shock speed obtained has the
form

0,0
unpn

p ] (34)

n

2 = 0,0 -
U Pl/(Zanpn) [ 1 T
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where ag is the initial volume fraction of the nth constituent
and pg the initial density. They also conclude that the model
is not limited to laminates, and can be used for any mechanical
mixture.

The particle velocity immediately behind the shock is assumed

to be equal in all layers and given by

0
unp

0
v1 =U (1/— z nn )

Thus when the constitutive relations for each constituent are known,
the shock velocity can be found as a function of the particle speed.
This relation is called a Hugoniot curve. Munson and Schuler applied
this model to a mixture of AS&ZO3 particles in an epoxy matrix and
compared their calcuations with experimental points (Figure 13). For
this mixture the compressibility is shown to behave much like the
softer component.

Identical results were obtained by Torvik (1970). Tsou and
Chou (1970) used a similar model but included the thermodynamics in
the analysis. Bedford (1971) has reported a theory for Hugoniot
relations for a multi-continuum.

Measurements of shock waves and shock Hugoniot curves for
quartz-phenolic have been performed by Isbell et al. (1967), Charest
and Jenrette (1969), and Munson et al. (1971). Studies in shock waves
in aluminum -polymethyl methacrylate (PMMA) have been reported by
Barker and Hollenbach (1970), and Schuler (to appear), and Schuler
and Walsh (to appear). Other references to the study of shock waves in

composites include Gary and Kirsch (1971) and Holmes and Tsou (1972).
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The independence of the shock speed on the direction of pro-
pagation in an elastically anisotropic composite can only hold
at high pressures. Munson and Schuler (private communication) have
indicated that such dependence on direction has been observed for
some composite systems below pressurés of 6 kilobars.

The construction of theoretical models in the region between
elastic wave theory and hydrodynamic shock model will present a

great challenge to the analyst.
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VI. EXPERIMENTS

The generation and measurement of stress waves in composité
materials has, in general, been based on''state of the art'techniques
in applied science used to study waves in solids.“These involve
the use of air guns, explosive charges, exploding foil flyer plates,
shock tubes and piezoelectric ultrasonic generators. To measure the
stress waves, strain gages, piezoelectric crystals, capacitance gages,
optical interferometer, holographic and pholoelastic techniques are
used. Experimental work in this area, while not as copious as the
theoretical efforts, has provided a steady stream of experimental
data with which to check the mathematical models. For a variety of
materials, including fiber, laminate and woven fiber composite, data
has been reported on measured wave speeds, attenuation and dispersion
of stress pulses, shock wave behavior, stress wave induced fracture
and impact.

The experiments can be categorized by the type of stress pulse
used. The monotonic compressional pulse has been used,from long rise
time, half sine like pulses induced by projectible impact, to short
rise time waves induced by explosive flyer plate impact. The Fourier
content of these pulses have a large zero~frequency component. Ultra-
sonic or.pulsed sine wave tests have a narrow spectrum centered about
a particular frequency or Qavelength. Thg latter waves are thus
ideally suited to map the dispersion relation directly,by measuring
the group velocities of the pulses, while in the monotonic pulse method

the dispersion is indirectly manifested by a change in pulse shape with
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passage through the material.

One of the problems associated with using pulsed sine waves is
measuring a wave velocity. As has been pointed out in many texts
(see e.g. Brillouin, 1960), the shape or envelope of the pulsed sine

wave travels at the group velocity of the spectrum center frequency and

is not equal to the phase velocity vp = yw/k when dispersion is

present. The velocities are related however

Vg = Vp/[l el vl ]

Brillouin also describes two other velocities, the wave front velocity

and the signal velocity. The latter is associated with the first

arrival of signals with the spectrum center frequency. The signal
velocity is sometimes equal to the group velocity (Brillouin, 1960).
The message however is clear; careful definition and interpretation
of ultrasonic wave velocity measurements are required in order to
construct the dispersion relation (k).

Abbott and Broutman (1966) demonstrated the use of a
monotonic pulse.to measure the equivalent elastic constants of steel/
glass and "S" glass/epoxy composites. This method is valid as long

as the stress rise length and total pulse length are large compared
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with the size of the fibers,kfiber spacing and the transverse structural
dimensions of the specimen (e.g. rod diameter or plate thickness).
Potapov (1966) used pulsed ultrasound to measure the elastic constants
of fiberglass plates. He concluded that orthotropic elasticity gave
a sufficiently accurate description of the elastic properties so deter-
mined by these tests. Markham (1970) also used pulsed ultrasound in
an ultrasonic tank to measure the elastic constants of a carbon fiber
epoxy resin composite.

Tauchert and Moon (1970) used the monotonic pulse method and
compared the results with data from resonance tests and static
moduli. The dynamically and statically determined moduli for boron/
epoxy and glass/epoxy were within 2% for waves along the fibers. It
was found that the wave attenuation could be predicted from vibration
resonance tests of the materials. Tauchert (1971a, 1971b) has used
ultrasonic waves to measure all the elastic constants of a variety
of composites. Tauchert (1972) has also measured ultrasonic attenuation
in composites and observed increases in damping due to initial tensile

stress.

Pottinger (1970) used a similar method in glass/epoxy and boron/
aluminum and found agreement between statically and dynamically
determined moduli to within 3% for waves in bars at various angles
to the fibers. Also Nevill, Sierakowski et al. (1972) used the same
method on steel/epoxy bars with waves along the steel fiber direction.
The increase in wave speed with volume fraction of steel checked very
closely the rule of mixtures (Figurel4 ). The attenuation was found
to decrease with increase in steel. Tensile waves generated on

reflection from a free end were found to propagate at a slightly
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higher rate than the compressional pulse. Also wave broadening and a shift of
peak stress to the rear of the pulse with time was observed. The attenuation
of stress waves due to a transverse fiber composite lamina in a rod has been
studied by Ross et. al. (1972). Other studies in which the elastic constants
of composite materials were determined using waves include Kvasnikov (1967),
Tuong (1970) énd Cost and Zimmer (1970a). Elastic constants of filled elastomers
were determined using ultrasonics by Waterman (1966) and showed the effects of
temperature and percent filler on the properties of the two phase materials.
Also White and Van Vlack (1970) have used an acoustic resonance technique to
determine the properties of open-pore polymer foams with higher-moduli infiltrating
matrices.

Using a gas dynamic shock (70 psi) to induce a short use time pulse,
Whittier and Peck (1969) studied the effects of dispersion in graphite and
boron reinforced carbon phenolic composites with the wave in the fiber
directions. The transmitted pulse showed a smoothed pulse rise in place of the
wave front, overshoot, and oscillations in the stress plateau region, which
checked the prediction of Peck and Gurtman (1969). This technique is
described in a paper by Cummerford and Whittier (1970). Lundergan and
Drumheller (1971a) performed a similar experiment on a laminated composite
of steel and epoxy. They used a flyer plate technique to generate compreséional
pulses (9 kilobar) normal to the layering. The wave front smoothing and
oscillations were again observed. The authors compared the results with a numeri-
cal solution of dilatational wave propagation in a periodically laminated medium
and obtained a satisfactory comparison with their experimental data. The calcu-
lations also showed that a steady wave was formed by about the time the pulse left

the third biléminar plate.
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In another work Lundergan and Drumheller (1971b) studied the
impact of an obliquely laminated composite of steel and polymethyl
methacrylate (PMMA). Although theory predicts a two step wave cor-
responding to a quasi longitudinal and a quasi sheér pulse, the
experiments showed a three step sloping wave. The aUthors’conclude

that further work is needed to explain the discrepancy.

With somewhat different motives Schuster and Reed (1969) used
a flyer plate technique to generate shock waves in a boron/aluminum
composite at pressures up to 76 kbar and impact duration of less than
0.2 micro sec. The impact velocity of the flyer plates were increased until
damage occurred. Increaged fiber crushing with impact velocity was
observed and the spalling velocity was measured for aluminum and two
boron/aluminum composites. The spall velocity for the plasma sprayed,
diffusion bonded composite showed a three fold increase in velocity
over the spall velocity for the aluminum specimens, while the plasma
sprayed, brazed composite showed a slight decrease in the spall
velocity compared with aluminum. This dramatic effect is attributed
to the two different geometrical arrangements of the fibers produced
during fabrication. As shown in Figure 15b, in the diffusion bonded
specimens the fibers are not touching and hence are able to attenuate
the shock wave by multiple scattering. In the brazed specimen (Figure
15a) one can see that the fibers are contacting in the direction of
the wave. Thus a boron path is created through the medium with less
of an increase in attenuation, resulting in a spall velocity no
greater than that for aluminum.

One may conclude from this experiment that the fiber geometry
will be an increasingly important factor in stress wave failure as

the stress rise distance or pulse length approaches the fiber
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dimensions. In the experiments of Schuster and Reed the fiber diameter
and spacing are about 0.1 mm and the pulses of the order of 1.0 mm

in length in the aluminum.

Several important papers have examined the dispersive nature of
composites directly with the use of ultrasonic waves. Asay et al.
(1968), demonstrated a decrease in phase velocity with frequency
as predicted by several theories (Peck and Gurtman, 1969) for waves
along the fibers of thornel and Boron reinforced carbon-phenolic composites.
The carbon-phenolic without the fibers showed no change in
phase velocity with frequency out to 4 MHZ but a change in the rein-
forced specimens of Av/v ~ 0.20 at 3 MHZ (Figure 16).

Tauchert and Guzelsu (1972) performed similar experiments on boron/
epoxy and examined a variety of wave normal-fiber orientations, for
both longitudinal and shear waves. In addition to the decrease in
group velocity of longitudinal with frequency both across and along
the fibers, shear waves traveling along the fibers and polarized
normal to the fibers showed a 25% increase in group velocity at about
1 MHZ (Figure 17). The wavelength in epoxy at this frequency is
about 2.6 mm compared with a fiber diameter and spacing distance of
about 0.1 mm. This behavior had been predicted by Achenbach and Herrmann
(1968) in an early theoretical model and by other authors (e.g. Sun
et al., 1968)-in later works. Shear waves propagating across the fibers
showed a slight decrease in group velocity with frequency.

Sutherland and Lingle (1972) performed a similar ultrasonic experi-
ment with pulsed sine waves on tungsten fibers in an aluminum matrix.
They also observed a decrease in wave velocity with frequency, for
longitudinal waves across the fibers, of about, Av/v‘& 0.083 at 3 MHZ.

They also claim to have observed a cutoff band in frequency as well as
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the second branch of the dispersion relation (optical branch) (Figure 18).
In addition, a frequency shift in transmitted pulse lower than the in-
cident pulse frequency was observed by these authors as the frequency
approached the cutoff region. This is attributed to the filtering of
the higher frequency components in the pulse lying in the stop bond of
frequencies, effectively shifting the observed frequency of the trans-
mitted pulse. It should be noted that Sutherland and Lingle (1972) claim
to have measured the phase velocity in their report. However precise
definition of the velocity measurement is lacking and the present
author suspects that the data represent group velocities.

Rowlands and Daniel (1972) have used interferometric holography
to measure the transverse displacement in vibrating.laminated aniso-
tropic plates. This method may hold some promise for observing two
dimensional waves in anisotropic plates due to transient impact loads.

Dally, Link and Prabhakaran (1971) were able to observe two
dimensional waves in orthotropic fiber reinforced plates using photo-
elasticity. This development was made possible by the development
of orthotropic-birefringent materials which were sufficiently trans-
parent for photoelastic analysis (see Prabhakaran, 1970). In this
study the authors examined both the transient loading of a half plane
with edge loading and the full plane problem with a hole loaded with
an explosive charge of 1ead.ozidqas shown in Figure 19. The anisotropic
nature of the stress wave propagation is clear from the figuré (moduli
ratio EL/ET v 3.0). A cusp-like fringe seen in Figure 19 might

represent the effects of shear wave anisotropy. By measuring the
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wave surface of the outer fringe the authors were able to reconstruct
the velocity surface for the quasi longitudinal wave of the plate
‘material. This veloéity was within 10% of that determined from the

static effective moduli of the plate material.

Another photoelastic study of stress waves is reported by
Hunter (1970), who used an explosive strip along the specimen edge.
Using alternating layers of different material, fringe patterns
accompanying a plane wave in the layered direction were observed.

Rose and Chow (1971) used a similar method to observe the build-up
of a steady wave front in a alternately layered composite of different
photoelastic materials.

Other experimental work on the propagation of waves in composites
includes Benson et al. (1970), Berkowitz and Gurtman (1970), Berkowitz
and Cohen (1970), Lord (1972), Cohen and Berkowitz (in press) have
studied dynamic fracture in composites due to stress waves,

Sierakowski et. al. (1970a, 1970b) have measured dynamic stress strain
relations for various composites and strain rates up to 103 sec'1
Up to a 85% increase in ultimate failure stress was observed at

these rates (Figure 20).
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VII. IMPACT PROBLEMS IN COMPOSITES

A. JIntroduction

The study of impact of isotropic solids has a large literature,
part of which is documented in the book by Goldsmith (1960). The
study of similar problems for composite structures has received
very little attention at this writing. To be realistic, one should
include the nonelastic and nonlinear aspects of the problem, since
the object of such studies usually concerns the prediction or avoidance
of failure due to impact. Also the material proverties under high
rates of strain become important, and éhe inhomogeneity and the
anisotropy in composite materials invite a wider set of fracture or
failure modes. Impact failure modes in isotropic materials include
indentation, spalling, and penetration of the projectile through the
structure. In composites one must add to this list fiber crushing,fiber
pullout, splitting, and delamination (see Figure 21). Even with no visible
damage, micro failure in the composite could produce a local stress
riser, change the natural frequencies,and decrease the fatigue life.

Both empirical and analytic studies have been made but rarely
are theory and experiment integrated. Much of this work has been
motivated by the need for bird and hailstone impact protection of
jet engine composite fan blades. Empirical studies of this problem,
conducted at great cost, haﬁe produced results in the form of leading
edge protection schemes and interleaving steel wire mesh between the
plys, (Anon, 1971), while analytical studies have only begun to explore

the problem (e.g. Moon, 1972).
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One of the first areas of interest in bird imnact problems was the
design of aircraft transparent structures such as windows and wind shields
to resist bird strikes. One such discussion is given by McNaughton (1964).
A summary of tests in this article on vinyl sandwich panels reveals that
the penetration velocity V, of one to eight pound birds on aircraft
wind screens decreased as the cube root of the mass of the bird M;
for a given set of structural conditions MvV3 = constant.

Research related to bird damage in aircraft engines has been reported
by Allock and Collin (1968). Impact by chicken carcases, wax, wood and
gelatine dummies have been investigated for target shapes resembling basic
geometries. The authors constructed a momentum transfer model for the

average impact force F due to a spherical impactor

MV sin?9

F= At

where M 1is bird mass, V bird velocity, 6 angle of deflection from
line of flight, At the duration of impact given by ratio of projectile

diameter to velocity. In terms of bird density o

1/3
6M}

F = MV?2 sin?20 Lﬂl

Measurements showed that the assumed impact time was too long and the
theoretical force too low. Deflections of the flat plate knife edge and
round nose targets elastically mounted showed that the target deflection

was proportional to the bird momentum.
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Research on hail impact damage to typical aircraft structures
has been presented by Hayduk (1973). Comparison is made of experi-
mental and an analytical model for denting type hail damage in
aluminum fuselage panels or dome segments (spherical cap) .

The range of sfructural impact problems includes other phenomena
besides bird and hailstone impacts. These include micrometeorite
damage on spacecraft, dust, sand and rain erosion, and cavitation
erosion of solids which involves dynamic stresses due to collapsing
bubbles. A discussion of impact erosion by dust particles for metal
surfaces is given by Smeltzer et. al. (1970). The mechanics of a
liquid drop impact with a solid surface has been given by Heyman (1969)
and Peterson (1972). Rain erosion of composites is reported by Schmitt
(1970). Ballistic problems of high velocity penetrations of plastic-
aluminum laminates by steel projectiles have been analyzed by Kreyenhagen
et. al. (1970) using numerical computer modes which illustrate several
damage modes.

The testing of composite materials under impact forces encompasses
a variety of load and specimen conditions. Classical Izod and Charpy
impact tests use relatively small beam-like specimens, (less than 3
inches long) under a transverse point force. The duration of the
impact is usually long compared with the time of a stress wave to
traverse the specimen. For example, using a wave speed of v ~ b5mm/usec,
a length L = 50mm, and pulse time 1 = 10-35ec, the nondimensional
number vt/L = 102 is a measure of the number of reflections occurring
during such tests. In shock wave impact testing of composites, high
compressive stress pulses of extremely short duration, (v 0.2 10" 6sec)
in thin specimens (v2 mm thick) are used producing a nondimensional

number, (using the same wave speed as above), vt/L ~ .5 . Also the NASA
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and the Air Force in the United States are sponsoring ballistic impact
tests on composite plates, as well as full size jet engine fan blades,

using hailstones and liquid objects to simulate bird impact.

Almond et al. (1969) have reviewed the literature on classical
impact testing on laminated composites. Embury et al. (1967) conducted

Charpy V-notch tests on soft solder laminated steel specimens both

with the impact force normal to the laminated surface (crack arrester
configuration) and parallel to the laminate surfaces (crack divider
configuration). In the latter case the ductile-brittle transition
temperakure was reduced and the specimens showed higher impact energy
absorption over homogeneous steel specimens.

Also Chamis et al. (1971) have performed miniature-Izod impact
tests on fiber composites of glass and graphite fibers in an epoxy
resin matrix (specimen size 7.9x7.9x37.6 mm). The tests included
specimens with thefibers either parallel or transverse to the cantilever
longitudinal axis. The.tests show failure modes of cleavage, cleavage
with fiber pullout, and cleavage with delamination. In the transverse
mode the cleavage included matrix fracture, fiber debonding and
fiber splitting. The transverse impact strength was found
by these authors to be correlated with the intralaminar shear strength
of the various composites tested.

In similar work, Novak and DeCrescente (1972) report the results
of Charpy impact tests for unidirectional graphite, boron, and glass
fibers in a resin matrix. They conclude that the toughness of the

resin matrix is not an important factor in impact energy absorption.

"S glass'" composites showed a higher impact strength than boron/resin
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and graphite/resin composites. They also evaluate the energy-absorption
mechanisms such as filament pullout, shear delamination, ect: They
conclude that the impact strength is correlated with the area under the
fiber stress-strain curve.

In a recent paper Peck (1972) has reviewed the literature on
spall fracture in composites using one dimensional shock waves. In
addition to the work of Schuster and Reed (1969) on fiber composites
discussed above, Warnica and Charest (1967) have used 1-2 usec compres-
sion pulses on laminated quartz phenolic to determine spall stress
thresholds. Similar work by Cohen and Berkowitz (1972), and Barbee’
et al. (1970) are also discussed.

It is useful to compare the merits of these different tests. In
spall tests and dynamic stress-strain tests (e.g. Sierakowski, et al.,
1971) the stress waves are one dimensional. Thus, clearly defined
stress states are used to measure the material strength properties.
However, in foreign object damage, the conditions of impact failure
involve the contact of blunt objects with a surface, thus producing
a complicated stress state. Izod and Charpy tests appear to simulate
actual impact, since a knife edge on a pendulum encounters a beam-
like specimen. Similarly,ballistic tests involve a locally inhomogeneous
stress state in the region of projectile contact which is found in
actual impact problems. However, the ad hoc nature of these stress
states does not allow comparison with other tests. Thus Izod and
Charpy ratings often cannot be compared. Also, because of the small
size of the specimens and the long contact time (e.g. mlO_gsec) many
reflections occur during the impact thus obscuring the wave like
nature of impact, which might be present in a larger specimen or
in the actual structure. 1In ballistic tests, however, contact times

of 5 107° sec or less are obtained for high velocity projectiles of the



order of one inch diameter. For a wave speed of 6 mm/usec the impact
of a plate would result in the total energy of impact contained in

a circle of radius less than 30 cm. If the plate is part of a large
structure fewer reflections might obtain than for a small test
specimen. It is the opinion of this writer that scale effects are

of importance in impact tests. Thus if test dafa is to be extrapo-

lated to larger structures the nondimensional numbers

where 1 1is the contact time, v a wave speed, and L a repre-
sentative length should be matched in addition to other variables.
B. Analytical Models for Impact

The total problem description involves the local deformation
at the impact site and the simultaneous determination of the motion
of the structure during and after impact. When the overall motion
of the structure takes place over a time period much larger than the
impact contact time, and the size of the impactor is much smaller
than the s;ructural dimensions, the problem may be split into two
distinct parts. I) The local mechanics of impact with a deformable
half space, IIj The.response of the structure to a prescribed local
impact force as determined in Part I. The errors involved in such
a scheme appear to be on the conservative side since the procedure

will underestimate the contact time and overestimate the contact force
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(Goldsmith, 1960).

Discussed in the next section is the impact of solid objects on
solid surfaces. As already mentioned liquid or rain drop impact
erosion is also an important problem. For sufficiently high impact
velocities, solids may be treated by a hydrodynamic model andiliquid
drop model may be useful.

1. Impact of a Half Space-Hertz Theory

The problem of an impulsive line force on an anisotropic half
space has been given by Kraut (1963) for a transversely elastic
isotropic material. In particular, a line source on the surface
normal to the symmetry axis produces two wave surfaces as shown
in Figure 22 corresponding to the wave surfaces,discussed in an
earlier section. The extension of this work to dynamical contact with
another elastic body has not been given to date. The waves generated
during a point impact on an isotropic half space have been studied by
Pekeris (1955) where it was shown that on the surface large stresses
propagate at the Rayleigh surface wave speed. But the dynamics of
an elastic sphere hitting an elastic half space are not known.
Thus without even considering anelastic effects, the analytic literature
on dynamic impact is limited even for isotropic materials. Instead,
what has been used is a quasi-static theoretical model called the Hertz theory
(Goldsmith, 1960). This is'based on the static deformation produced by
a point force on a surface. When the force, F , is between

a sphere of radius R, and a half space, F
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is related to the relative approach of sphere and half space, a , by

F =« u3/2 (35)

where

1/2 Y
ﬂ_ R 1 v
3

§ + 38 R E.
CH ,) i

(v 1is Poisson's ratio, and E 1is Young's modulus).
This relation is nonlinear since the contact area ga2 depends

on the force.

azﬁRoc
Equating this force to the change of momentum of a sphere during
impact with initial velocity VO , this theory gives the following ex-

pressions for the contact time and force history,
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where oy is the maximum approach, and M is the mass of the sphere.

Extension of the Hertz theory of impact to anisotropic bodies has
been made by Chen (1969) and Willis (1966). The contact region has been
shown by Willis to be elliptic for an anisotropic half space in contrast
to a circle for the isotropic case. However he obtains a force deflection
relation similar to Eq. (35), where « depends in a complicated way on the
elastic constants. The determination of the ellipse parameters must be
done numerically and no examples have been given to date for typical
composite anisotropy.

A simple model for estimating the contact time for isotropic spheres
on composites has been suggested by the author Moon (1972d), which assumes
a circular contact area. Experiments on the contact of a steel sphere
on unidirectional fiber composite plates, with the fibers parallel to
the surface, show the contact area to be ellipical with the large axis

normal to the fibers, but only slightly deviating from a circle.
Thus in Eq. (35 the half space constants (1 - v2)/E are replaced by a

transverse elastic constant for the composite. Chen* has suggested
using the compliance 833 where the "3" axis is normal to the
surface. The author has used 1/C33 to replace (1 - v2)/E in
Figure 23 to estimate the contact time for hailstones and granite
spheres on 55% graphite fiber in epoxy. For impact speeds in the
range 100-500 m/sec the contact times range from 15-85 usec.

In summary these formulae reveal the following dependence of contact

time and peak pressure on impact velocity

*
Private communication
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T 1/Vl/5 g po " V2/5
Such results, however, should only be used as guidelines, since the

theory uses assumptions which break down at high velocities. Goldsmith

(1960) has made the following summary of the Hertz theory of contact.

1) At high velocities the Hertz contact time is a lower bound on the
contact time.

2) When a sphere strikes a beam, the motion of the beam decreases the
force, but the contact time remains about the same.

In another reference Goldsmith and Lyman (1960) have shown the Hertz

theory to be remarkably valid insofar as contact time and peak force

for the impact of hard steel spheres (1/2 inch diameter) onto a hard

steel surface for velocities up to 300 ft/sec (v91.5 m/sec). The data

in Figure 23 for graphite epoxy can only be used as a rough guide for

contact times, until experimental data becomes available.

2. Non Hertzian Impact

The Hertz theory of impact rests on the contact law F = Kag/z

For boron/aluminum and graphite fiber/epoxy composite plates this force

law was tested under 1/4 inch and 3/8 inch steel balls in a static

testing machine. The preliminary results in Figures 24,25 show clearly

that a more general law is required and that for moderate forces (less

than 100 1bf) the deformation is inelastic, requiring a different law

for approach and rebound.

A more general contact law was given by Meyer (see Goldsmith, 1960)
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If such a law holds for both approach and rebound, formulas similar
to the Hertz theory can be obtained, (see Goldsmith, 1960, p. 91).

Clearly the state of knowledge about the impact of composite or
inhomogeneous bodies is unsatisfactory. 1In addition to the lack of a
good quasi-static theory which can account for anelastic effects, a
truly dynamical impact model for composites is needed.

For isotropic materials computer codes employing finite dif-
ference methods have been developed for dynamical impact and penetration
projectiles and deformable bodies, (e.g. Wilkins, 1969, Kreyenhagen et. al. 1970).
These models apply anelastic constitutive equations and can predict
permanent deformation. The extension of these codes to composites will
no doubt be available in the near future as well as codes based on finite
element methods. H wever there is a need for analvtical solution for
impact phenomena; first for their simplicity and accessibility to the
designer, and second to check the computer codes which will certainly
appear in the near future.

In developing analytical models for impact, the use of an equi-
valent anisotropic material is questionable if one desires to explain
stresses in the contact region. When a composite material is indented
by another body of convex surface the area of contact goes to zero as
the contact pressure decreases. Thus for small forces this area is
necessarily of the order of the dimensions of the fibers or lamina.

One would expect a force-deflection law to exhibit periodic changes

in slope as the contact area engages each successive fiber (Figure 25).
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This is the'tentative explanation for the waviness in the experi-
mental relation shown in Figure 25 for 50% boron fibers in aluminum
matrix. The periodic plateau appear to occur at deflections cor-
responding to contact radii differing by the fiber spacing (v.004
inches). Further experimental work on this problem is needed.
€. Structural Response to Impact
1. The Coupled Problem

When the impact force and duration depend on the structural
motion the above procedure cannot be used. The coupled response
of an isotropic plate and a spherical impactor was teated by Eringen
(1953) and others, (see Goldsmith, 1960). Conceptually the extension
to composite structures is similar. Let two coordinate systems be
embedded in the two bodies (see Figure 26) and let the axes xg, x;

be directed into the surfaces of structure and impactor respectively.

Relative to these coordinates w® , w' vrepresent surface deflections,
3 3

W , the deflection of the plate or shell neutral surface, and W

3 3
the displacement of the impactor center of mass. If the surface

shapes of both structure and impactor are given by x = S(X »X ),
3 1 2

x1= S'(x;,x;) then the boundary condition to be satisfied over
3

the contact region is

w o+ w' =W!'-W -8 - 8" 38
(3 3) 3 3 ) (38)
on X3, xé = 0
The deflections w3, w; are determined from a three dimensional

analysis, such as a Hertz analysis, (as e.g. Willis, 1966). The
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displacement W 1is governed by a two dimensional plate or shell
3
theory, while the impactor displacement W; is governed by Newtons

law for the body under initial conditions

,.at t=20

The solution of such a problem for a composite structure is not
known to the author, though the problem seems fairly straightforward.
2. Transient Load Problems

There has been, however, a number of studies made of the response
of a composite body to short duration or impact-like forces. Already
mentioned is the work of Peck and Gurtman (1969) on the response of a
laminated half space to a compressive stress on the surface in the
direction of the layering. Sve (1972) has also treated the laminated.
half space under impulsive heating of the surface, (e.g. from a laser),
with thermoelastic coupling. This work uses the approximate continuum
theory of Sun et al. (1968). In another work Sve and Whittier (1970)
have applied this theory to the pressure loading of an obliquely laminated
half plane to determine the effects of lamination angle and dispersion
on the stresses.

Voelker and Achenbach (1969) treated an infinite laminated body
under a step body force in a plane normal to the layering using an exact
modal analysis. The interface shear stress wave shows a slow rise to
a static value, while the normal interface stress is found to be oscillatory.
Also Sameh (1971) has used a discrete element model to calculate the elastic-

plastic response of a layered half space.
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The one dimensional impact loading of a laminated plate has been
discussed by Hutchinson (1969) where the pressure is normal to the
layering. This problem can be solved exactly using the reflection and
transmission coefficients for a stress pulse when it encounters a
discontinuity. For example, the transmitted stress across a plane
boundary separating two different materials with normal stress

incident on the surface is given by
o = To , T=22Z272/(Z +7Z)
0 1 2 1 2

where Z1, Z2 are the acoustic impedances of the two materials.

(Note, that T 1is independent of the direction of the incident stress).
Thus a pressure discontinuity of intensity P, propagating normal to

a laminated medium of alternating acoustic impedances suffers an atten-
uation at the head of the pulse of

[6] = - PO T°D (39)

after encountering n pairs of layers. Analysis using the reflected
and transmitted waves in each layer reveals the stress history behind
the wave front.
3. Transient Edge Loading of a Plate

As noted earlier, when the pulse duration is long enough, dispersive
effects can be neglected as a first approximation and an equivalent aniso-

tropic model can be used (Egqs. (7 ), (12)). One of the effects of anisotropny
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is revealed in the one dimensional edge impact of an orthotropic
plate with the impact force in the plane of the plate and the edge
oblique to a symmetry axis . Neglecting

structural and material dispersion, we can use Egqs. ( 7), with

the boundary conditions on the edge
£ = - P £(E), " =0

For an isotropic material a compressional wave would be generated.

However, for an edge oblique to the symmetry axis, two waves are

propagated into the plate with wave speeds corresponding to those
on the velocity surface with wave normal (cos¢, sin¢). Also dis-
placements normal and parallel to the edge will be excited. The
displacements will take the form (xn normal to edge, X along

the edge)

O
= U [cosd - o sine] f(t - — )
1 1 Vl
&
+ U [cosd - o sing] f(t - —)
2 2 v
A 2 (40)
U 5. U [sin¢ + a cos¢] f(t - —)
1 1 Vl
ol
U i f(t - —
+ 2[51n¢ + az cosd] £( V2 )

The vectors (1, a ) and (1, o ) are the eigenvectors corresponding
1 2
to v , v respectively and depend on the angle ¢.
1 2
The quasi shear wave is generated through the coupling of the

Tl . . . . .
normal stress t with the shear strain, e s » 1N the constitutive
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. . . n s . . n
equations written in the x° - X coordinate system, i.e. on x =20

nn

£ = A1l My 12 oSS

+ 2016 ™ - _ P9 £(1)

(41)

ns n . ’
ALE T 226 55 4 9p86 TS _

The constants Ail, A16, etc. are related to the elastic constants and
the angle ¢ , (see Ashton et al. 1969). Determination of the constants
Ul, U2 result from substitution of Egs. (41) into these boundary condi-
tions and is left for the reader.
4. TImpact Generated Flexural Waves

Flexural waves generated by impact forces transverse to isotropic
plates has been reviewed by Mikowitz (1960). The one dimensional line
impact of anisotropic plate using both the Mindlin Egs. (12) and the
classical theory, Eq. (15), has recently been treated by Moon (1972d)
In this work the line force is transverse to the plate surface and
oblique to the composite symmetry axes. In the context of the Mindlin
theory extensional waves are generated by a transverse force as well as
a flexural wave. The importance of shear deformation and rotary
inertia, as reflected in Mindlins theory, is shown to become important
when the width of the contact force distribution is comparable to the
plate thickness.

The calculation of the two dimensional stress wave response to
central impact forces has recently been studied by Chow (1971) and

1}

Moon (1972b,c).Using a Timoshenko theory for laminated orthotropic plates
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Chow (1971) treats the transient response of a rectangular plate to normal
impact.

The author (Moon 1972b,c) uses a Mindlin plate model to examine the stress
contours after impact in an infinite plate. Again both extensional
and flexural waves are shown to be geﬁerated under transverse impact.

Solutions to the equations which govern the central impact of
anisotropic plates were found for impact-like pressures using an
analytical/computational method. The impact pressure distribution

used was the following

= - - T 52 T b4y ein TE
q Po (1 2 ( a 34 + ( = 3%} sin p

2 o

for r < a, (r2 = x2 + xé) and t < T (42)
1

q = 0, for r >a or t >t
2 - o}

The three stress measures chosen were the average membrane stress
(t + t )/2, the average flexural stress (t  + t )/2 at the surface
11 33 11 33
of the plate, and the maximum interlaminar shear stress given by
(tz + tz )1/2'
21 23
The stresses were calculated in a quarter plane of the plate for a
specific time after the initiation of impact and were normalized with
respect to the maximum impact pressure as calculated in the above section.

The data is presented for various times and lay-up angles in the form

of stress contour plots (Figures 27, 28). Superimposed on these curves
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are the theoretical wave front for the particular wave in question
and the radius of the circle which bounds the impact pressure.

The significant stress levels all lie within the surface bounded
by the theoretical wave surface. In Figure 27, the average or membrane
mean stress contours 1/2(t11 + t33) for graphite fiber/epoxy matrix
laminate plates are shown for lay-up angles of 0°, 45°,

The flexural or bending mgtion has three waves associated with
it. The largest stresses however were found in the lowest flexural

wave which travels at an isotropic speed given by

1 ’
v = [C «/p] /2
3 66
(¢« = w2/12 , 1is Mindlin's correction factor). Stress contours for the
mean flexural stress 1/2(t . + t3 )} 1in this wave are shown in

1 3
Figure 28 for graphite fiber/epoxy matrix laminate plates (+15°, +45

o)
lay-up angles) under the transverse impact pressure Eq. (42). Note that
the wave front is circular since v3 is isotropic for laminate plates.
Stresses in the second and third flexural waves were found to be small.
A three dimensional computer plot is shown in Figure 29 for the flexural
stress for the i4501ay—up angle composite plate.

The maximum stress levels were found to occur immediately after
the end of impact and appeared to propagate along the fiber directions,
given by the lay-up angles.

These results show the effect of the change of fiber lay-up angles

on the stress distributions. For the flexural stresses, the optimum
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lay-up angle to be t150, showing a 34% lower stress level than the +45°

case. However, regarding the interlaminar shear stresses, for the same
impact conditions, there seems to be little difference in the maximum
stress level withlay-up angle despite significant changes in stress
distribution in space with lay-up angle.

Another result of these calculations is that the induced stresses
depend on the impact circle radius to plate thickness ratio.

Of course, to evaluate the possibility of fracture or failure
of the composite under impact, the complete stress matrix at a point

must be known, as well as the failure criteria for the material.
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CAPTIONS FOR FIGURES

Geometry of a two dimensional wave in a multi-ply plate

Velocity surfaces versus wave direction for various
ply lay-up angles; 55% graphite fiber/epoxy matrix

(Moon, 1972)

Direction of particle motion versus wave normal for
various ply lay-up angles; 55% graphite fiber/epoxy

matrix (Moon, 1972)

Wave surfaces for multi-ply plates; a) 0° fiber lay-up

angle, D) +15° fiber lay-up angle (Moon, 1972)

Wave surfaces for multi-ply plates; a) +30° fiber lay-up

angle, D) +45° lay-up angle (Moon, 1972)

Flexural wave dispersion relations in an anisotropic plate
(Mindlin's theory); 55% graphite fiber/epoxy matrix multi-

ply plate, +45° fiber lay-up angle,
Surface waves and edge waves in solids

Distortion of an initially shaped trapezoidal pulse
due to wave dispersion e.g. longitudinal waves pro-
pagating across or down the fibers of a unidirectional

fiber composite material
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Distortion of an initially shaped pulse due to wave
dispersion e.g. shear wave propagating down the fibers

of a unidirectional fiber composite material

Approximate dispersion relations for longitudinal waves
in boron fiber/aluminum matrix rods for various orientations
of the fibers to the rod axis (Pottinger, 1970), material

dispersion not included.

Sketch of dispersion relation for longitudinal or shear waves
propagating normal to the layers of a composite of alter-

nating isotropic layers, Eq. (26).

Comparison of exact dispersion relations (solid lines) with
the microcontinuum theory of Sun et al. (1968) for various
shear modulus ratios; a) shear waves propagating in the
direction of the layering, b) vlongitudinal waves propa- -

gating in the direction of the layering

Shock wave speed versus particle velocity (Hugoniot curve)
for a mixture of A% O particles in an epoxy matrix

2 3
(Munson and Schuler, 1970)

Experimental speeds of longitudinal waves in steel fiber/epoxy
matrix rods for various volume fractions of steel, (Nevill

et al., 1972); waves travelling along the fibers
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The effect of fabrication on shock wave spall damage
in a boron fiber/aluminum matrix composite (Schuster
and Reed, 1969); a) brazed composite, b) diffusion

bonded composite

Experimental dispersion relation for longitudinal waves
propagating down the fibers (Asay et al., 1968); a) graphite
fiber (Thornel) reinforced carbon phenolic composite,

b) boron fiber reinforced carbon phenolic composite.

Experimental dispersion relations for waves in boron fiber/
epoxy matrix composite (Tauchert and Guzelsu, 1972)
upper figure - longitudinal waves normal to the fibers;

lower figure - shear waves, x axis is along the fibers
i 3

Experimental dispersion relation for longitudinal waves
in a tungsten fiber/aluminum matrix composite (Sutherland

and Lingle, 1972) lower curve shows second branch and a

cutoff frequency around 4 MIZ

Orthotropic photoelasticity experiment showing an anisotropic
extensional wave in a plate loaded with a lead azide charge
in the center (Dally, et al., 1971), compare with Figures

4, 27.
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Dynamic stress-strain curves for steel fiber/epoxy matrix
composite under various strain rates (Sierakowski et al.,
1970a) tests were conducted using compressional waves along

the fibers

Impact damage in a graphite fiber/epoxy matrix plate
(.25 cm, 0.1 inches thick) showing back face splitting
for 0.64 cm (1/4 inches) diameter steel balls at

0

115 m/sec initial velocity. Ply lay-up angles t45°, 0-,

+45° (Novak and Preston, 1972)

Wave surfaces generated by a line impact on a anisotropic

half space (Kraut, 1963)

Contact times based on Hertzian model calculations for the
impact of ice balls and granite spheres on graphite fiber/

epoxy matrix half space

Static experimental contact force relation for a 3/8 inch

diameter steel ball on graphite fiber/epoxy matrix composite,

normal to the fiber direction

Static experimental contact force relation for a 1/4 inch
diameter steel ball on boron fiber/aluminum matrix composite,

normal to the fiber direction

Geometry of impact with a plate, showing the effect of

motion of the structure
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Stress contours for the membrane stress 1/2(t11 + t 3)
3

after impact for a 55% graphite fiber/epoxy matrix

plate. Comparison of a) 00, and b) +45° ply lay-up

angle cases (Moon, 1972)

Stress contours for the lowest flexural wave stress
1/2(t11 + t33) after impact for a 55% graphite fiber/
epoxy matrix composite plate. Comparison of a) ilSo,

and b) +45° ply lay-~-up angle cases (Moon, 1972)

Three dimensional plot of the lowest flexural wave,
1/2(t11 + t33), and a quarter plane of the plate for
a 55% graphite fiber/epoxy matrix composite plate with
+45° ply lay-up angles (fibers along diagonals)

(Moon, 1972)
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